如何构建Explore的推荐系统

2021-01-11  | 发布者:admin  

利用IGQL语言、账户嵌入方法和上述的蒸馏技术,将Explore系统分为两个主要阶段:候选对象生成阶段(也称为寻源阶段)和排名阶段。

                Explore推荐系统概述

1、候选对象的生成

首先,我们利用人们以前在 Instagram 账户上的行为数据(例如,“喜欢”或“收藏”的某个账户中的媒体)来确定人们可能感兴趣的一些账户,我们称之为种子账户。这些种子账户通常只是 Instagram 上类似或具有相同兴趣的账户的一小部分。我们使用帐户嵌入技术来确定类似于种子帐户的帐户。最后,基于这些帐户,我们可以找到他们发布过的或是曾经参与过的媒体。

              上图显示了Instagram Explore推荐系统的典型来源

 

人们在Instagram上使用账户和媒体的方式有很多种(例如,关注、喜欢、评论、收藏和分享)。也有不同的媒体类型(如照片、视频、Stories和直播),这就意味着我们可以使用类似的方案构建各种各样的来源。通过使用IGQL语言,这个过程会变得非常的简单,不同的候选源只是表示为不同的IGQL子查询。

 

通过不同类型的来源,我们能够为普通访问者找到上万个符合条件的候选对象。我们希望确保推荐的内容既安全又适用于Explore上包括全球各种年龄段的社区。通过使用各种信息,筛选出可以确定为不符合推荐条件的内容,然后再为每个人建立符合条件的清单。除了阻止可能违反政策的内容和错误信息外,还可以利用机器学习系统来帮助检测和过滤垃圾邮件等内容。

 

然后,对于每一个排名的请求,为一个普通用户确定数千个符合条件的媒体,从符合条件的清单中抽取出500个候选对象,然后将这些候选对象发送到下游的排名阶段。

2、候选对象排名

500名候选对象的排名架构是一个三阶段的排名基础架构,辅助在排名相关性和计算效率之间权衡取舍。这三个排名阶段如下:

 

  • 第一阶段:蒸馏模型模仿其它两个阶段的组合,具有最小的特征,从500个候选对象中选出150个最高质量和最相关的候选对象;

 

  • 第二阶段:一个轻量级的神经网络模型,具有全套密集的特征,选择50个最高质量和最相关的候选对象;

 

  • 第三阶段:具有全套密集和稀疏特征的一个深度神经网络模型。选出25个最高质量和最相关的候选对象(Explore 的第一页)。

 
QQ在线咨询
服务热线
13544009511
返回顶部

粤公网安备 44030502004796号